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As is generally assumed, clusters in protein–protein interaction (PPI) networks perform specific, crucial functions in
biological systems. Various network community detectionmethods have been developed to exploit PPI networks in
order to identify protein complexes and functionalmodules. Due to the potential role of various regulatorymodes in
biological networks, a single method may just apply a single graph property and neglect communities highlighted
by other network properties.
This work presents a novel integration method to capture protein modules/protein complexes by multiple
network features detected by different algorithms. The integration method is further implemented in a
web-based platform with a highly effective interactive network analyzer. Conventionally adopted methods
with different perspectives on network community detection (e.g., CPM, FastGreedy, HUNTER, MCL, LE,
SpinGlass, and WalkTrap) are also executed simultaneously.
Analytical results indicate that the proposed method performs better than the conventional ones. The proposed
approach can capture the transcription and RNA splicing machineries from the yeast protein network. Mean-
while, proteins that are highly associatedwith each other, yet not described in bothmachineries are also identified.
In sum, a protein that is closely connected to components of a known module or a complex in the network view
implies the functional association among them. Importantly, ourmethod can detect these unique network features,
thus facilitating efforts to discover unknown components of functional modules/protein complexes.
Availability: Spotlight is freely accessible at http://hub.iis.sinica.edu.tw/spotlight. Video clips for a quick view
of usage are available in the website online help page.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Elucidating protein complexes and functional modules is essential
for understanding genome functions. A protein complex comprises a
small set of proteins that are closely associated with each other, and

also present in the same scenario. Meanwhile, as a group of proteins,
a functional module participates in a specific process, while each
binding event may occur in the same or different time and place
(Spirin and Mirny, 2003). Several protein–protein interaction data-
bases have emerged with the advent of high-throughput technologies
such as yeast two-hybrid assays and affinity purification along with
tandem mass spectrometry. Previous studies analyzed the graph to-
pology of protein–protein interaction (PPI) networks, in which the
proteins are denoted as nodes and pairwise interactions are denoted
as linking edges. According to their results, protein complexes and func-
tional modules tend to be densely connected to each other while having
fewer connections to the other proteins in a network (Barabási and
Oltvai, 2004; Rives and Galitski, 2003; Spirin and Mirny, 2003). Above
observations also imply the rationale to identify protein complexes and
functional modules by detecting communities/clusters from a high
coverage PPI network.

Among the various community structure detection (or graph
clustering) methods applied to the PPI network to detect protein
complexes and functional modules include random walk based
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methods (Enright et al., 2002; Pons and Latapy, 2005; van Dongen,
2000), edge betweenness-based methods (Dunn et al., 2005; Girvan
and Newman, 2002; Luo et al., 2007), clique percolation methods
(Adamcsek et al., 2006; Zhang et al., 2006), and core-attachment
based methods (Chin et al., 2010; Leung et al., 2009; Liu et al., 2009;
Wu et al., 2009). While relying on widely divergent approaches, these
methods have their own unique strengths and limitations. Additionally,
while various regulatory modes are presented in biological networks, a
single method may just encompass a single graph property and disre-
gards communities that may be highlighted by other network proper-
ties. Bench researchers have difficulty in justifying the applicability of
various algorithms on their interesting targets. Despite the develop-
ment of some consensus clustering methods to solve this problem
(Asur et al., 2007; Lancichinetti and Fortunato, 2012; Zhang et al.,
2009), such approaches failed to include overlapping community detec-
tion methods while attempting to integrate the partition methods that
divide the entire graph into smaller subgraphs and assign each node to
one cluster. Therefore, this work presents a novel integration method,
capable of grabbing network community structures from the input pro-
tein network. The proposed clustering approach, in which graphs are
integrated, performs superior to other conventionally adoptedmethods
in terms of protein complex harvesting and gene ontology (GO) term
enrichment. Moreover, the proposed integration method allows for
the successful retrieval of the transcription machineries from the yeast
protein network, as well as those proteins that are closely related to
the transcription process yet are not included in the complex.

The proposed integrated graph clustering method is implemented
into a web-based protein complex detection scheme with an interactive
network analyzer called Spotlight. With an intuitive, zoomable graphical
interface, Spotlight displays the PPI network clustering results with rich
and updated annotations of proteins and their linking edges (i.e. the
interactions) if the input PPIs are described by standard UniProt ID or
yeast SGD IDs. For user convenience, the proposed approach includes
other conventionally adopted network clustering methods (e.g., CPM
(Palla et al., 2005), FastGreedy (Clauset et al., 2004), HUNTER (Chin et
al., 2010), LE (Newman, 2006), MCL (van Dongen, 2000), SpinGlass
(Reichardt and Bornholdt, 2006), and WalkTrap (Pons and Latapy,
2005)) in Spotlight platform to easily perform network analysis, as well
as view/export, and link results to further functional analysis processes.
The Spotlight-based integrating graph clustering method outperforms
other network clusteringmethods by exploiting unique network proper-
ties that imply the functional association among proteins. Importantly,
the proposed method facilitates research efforts to discover unknown
functional modules/protein complex structures as well as novel complex
components/regulators components from a PPI network.

As graph clustering is a variant of data clustering, related methods
differed mainly in the similarity of the objects handled. Restated, in
data clustering, the similarity of any two objects of the input data is
well defined; meanwhile, in graph clustering, the similarity of objects
is expressed by edges of an input graph. Data clustering can be classified
into hard data clustering and soft data clustering. In hard clustering, an
object belongs to exactly one cluster; meanwhile, in soft clustering, an
object is assigned to multiple clusters with membership weights that
are equivalent to one. In contrast to data clustering, graph clustering is
classified into overlapping graph and non-overlapping graph. Similar
to hard data clustering, an object in a non-overlapping graph clustering
outcome belongs to exactly one cluster. Unlike soft data clustering, an
object in anoverlapping clustering result is assigned tomultiple clusters
with weighted ones respectively. In contrast to conventionally adopted
data clustering methods, consensus clustering (also called ensemble
clustering or median partitioning) attempts to integrate multiple data
clustering results in order to obtain better results. Consensus clustering
is based on the premise of majority rule. Restated, a consensus clustering
outcome is, on average, most similar to all of the input clustering
results. Therefore, consensus clustering performs poorly when the inte-
grated clustering results significantly differ from each other. To avoid

this problem, the proposed method adopts the elitist strategy, in which
good clusters are chosen from all clustering results and merged together.

2. Methods

The proposed integrating graph clustering approach attempts to
identify good clusters with multiple network features of a PPI network.
Therefore, a measure must be designed for qualifying the clustering
results concluded from different methods. This section describes the
community score function for evaluating the cluster quality. The inte-
gration method is introduced as well.

2.1. Community score function

Based on the definition of weak community (Radicchi et al., 2004),
Lázár et. al. proposed a measure shown as Formula (1) to judge the
quality of a cluster S in a graph G (Lázár et al., 2010).

L Sð Þ ¼ 1
Sj j �

E G S½ �ð Þj j
Sj j
2

� � ∑
i∈S

kini Sð Þ−kouti Sð Þ
di � si

; ð1Þ

where |S| denotes the cardinality of S; | E(G[S]) | represents the num-
ber of edges in the subgraph induced by S; kiin(S) is the number of
neighbors of a vertex i, which are also in S; in contrast, kiout(S) denotes
the number of neighbors of i, which are not in S; di represents the
number of neighbors of i and si is the number of clusters containing

i; and the ratio of | E(G[S]) | and Sj j
2

� �
represents the edge density

of the cluster. Therefore, the fact that L(S) is higher suggests that
the quality of cluster S should be better. Another assumption of this
measure is that the number of inward going edges (i.e. kiin(S)) should
be greater than that of outward going edges. However, this measure is
inappropriate for those clusters containing vertices in high degree. To
explain this situation, Fig. 1 describes a simple example. The network
shown in Fig. 1 contains four clusters. For cluster A, although the
number of outward going edges of vertex v is significantly greater
than that of inward going edges of vertex v, cluster A is viewed here
as a cluster from this network because the outward going edges are
not across different clusters. We believe that the quality of cluster A
should be better than that of cluster D because the members of cluster
A are more closely associated with each other than that of cluster
D. However, according to Formula (1), L(A) 0.6bL(D) 0.73, which
contradicts our intuition. To solve this problem, this work proposes
the measure (i.e. the community score function) to help us select
good clusters from the integrated clustering results.

Our measure is based on two observations of Watts and Strogatz:
(1) PPI networks have a small average shortest path between two
proteins; (2) the clustering coefficient is significantly higher than
would be expected under a random selection (Watts and Strogatz,
1998). Our measure is introduced formally by using graph terms
hereinafter to describe it. A vertex and an edge denote a protein
and an interaction between two proteins of a PPI network. For an un-
directed graph G, let G=(V, E, w), where V is a vertex set; E repre-
sents an edge set; and w refers to an edge weight function. For a
cluster S⊂V, a vertex-induced subgraph G[S] is S together with any
edge whose endpoints are both in S. Here, the number of closed,
three-step walk paths is used to describe neighboring condition of a
cluster, along with the average length of shortest paths used to de-
scribe the compactness of a cluster. The community score function
CS(S) is defined as

CS Sð Þ ¼ the number of closed walks whose step is three in G S½ �
the average shortest path lenght in G S½ � :
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As is expected, proteins in a cluster have more neighbors. Also, a
cluster should be compact, that means a shorter distance between
two proteins in a cluster implies a higher community score.

2.2. An integration framework for graph clustering

The illustration and pseudo code in Fig. 2 provide an overview of
the proposed integration method. Briefly, all clusters produced by
various clustering methods are accumulated in the list total clusters
(TC) and sorted in a descending order with the community score.
For each cluster S in TC, it is relocated to the set integrated clusters
(IC) when the cardinality of S does not exceed threshold α, CS(S)>0
(i.e. a protein with at least two neighbors that are connected directly).
And the overlapping of S to any present clusters in the IC does not ex-
ceed threshold β.

3. The implementation and usage of the spotlight web platform

3.1. Clustering methods in spotlight

Seven other methods are used in Spotlight, as described in the fol-
lowing. Clique percolation method (CPM) is a conventional means of
detecting overlapping community structures in networks. A cluster
computed by CPM is the maximal union of k-cliques that can be
linked through a series of adjacent k-cliques, in which a k-clique is a
fully connected sub-graph of k nodes. Notably, two k-cliques are con-
sidered adjacent if they share k-1 nodes. Hence, when the value of pa-
rameter k of CPM increases, although clusters become denser,
coverage of clusters may decrease. A previous study suggested a k
value between 4 and 6 (Palla et al., 2005); the value of k for CPM in
Spotlight is 4 if it is applicable.

The Markov Cluster (MCL) algorithm calculates the successive
powers of the associated Markov matrix to simulate the flow (i.e. ran-
dom walks) within a graph. The expansion and inflation of a flow are
alternately simulated until an equilibrium state is reached. MCL is an
efficient and scalable clustering method. However, the value of the
inflation parameter significantly influences the number of clusters
(Brohée and van Helden, 2006). The default inflation parameter (i.e. 2)
is used in Spotlight. Meanwhile, the subgraphs induced by a cluster com-
puted by MCL may not be connected.

As a parameter-free clustering method (Chin et al., 2010),
HUNTER generates a module seed from a vertex and, then, the seed

grows gradually by adding vertices that are strongly connected to it.
The method further merges any two grown modules with common
vertices above a threshold iteratively, and finally determines the out-
put clusters.

Additionally, this work implemented FastGreedy, leading eigen-
vector (LE), SpinGlass and WalkTrap based on the Igraph package
(Csárdi and Nepusz, 2006). FastGreedy utilizes a benefit function
to detect communities in the network by Newman's modularity
(Newman, 2004); LE detects a community's structure by estimating
the leading non-negative eigenvector of the modularity matrix.
SpinGlass detects communities via a spin-glass model with simulated
annealing. WalkTrap is an agglomerative clustering method that uses
a random walk to detect the dense part a network. This work per-
forms these methods in Spotlight with their own default setting.

3.2. Implementation of spotlight

Spotlight (http://hub.iis.sinica.edu.tw/spotlight) platform's archi-
tecture is in three tiers: client/server/databases. In the client part,
the visualization interface of the network clustering results is a Java
web applet based on Piccolo (Bederson et al., 2004) and Jung 2.0
(http://jung.sourceforge.net). The server tier is constructed on an
open-source structure of Linux Ubuntu (ver.9.10), Apache-Tomcat
(web server), PHP and JSP (html-embedded scripting languages),
PostgreSQL (a relational database), GO-TermFinder (GO enrichment
analysis) (Boyle et al., 2004), and XMLMakerFlattener (converting
data format) (Hermjakob et al., 2004). The database tier provides
the annotation of nodes and edges on Spotlight visualization inter-
face, as well as the retrieval demands of clustering results. A relational
database is constructed to incorporate data sources from several gen-
eralized and specialized databases, including UniProt, KEGG, GO, and
InterPro (Hunter et al., 2012), when they are routinely updated. The
database (serves OR functions) is the annotation pool for the input
network if the input PPI sets are in standard Uniprot IDs or yeast
SGD IDs. Fig. 2B describes the algorithm pseudo code of integrating
graph clustering method. The thresholds α and β in our method are
150 and 0.5, respectively.

3.3. The usage of the spotlight web platform

Spotlight takes three protein interaction data formats: the stan-
dard PSI-MI XML format, tab-delimited text file weight values, and

Fig. 1. Toy example that illustrates the weakness of previous cluster measures. Although this network contains four clusters, most cluster measures them as good clusters.
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tab-delimited text file without weight value. A notification mail with
clustering result retrieval link is sent to a job submitter when the cal-
culation is completed. Fig. 3 illustrates an example of the Spotlight
result. In default, the top ten clusters from the integration method
appear in the GUI java applet, followed by a summary of clustering
results. The right panel of the GUI provides various information

tabs, including a summary of the mouse-click selected cluster, anno-
tations of the selected proteins in the expended cluster, or the infor-
mation of a selected linking edge in the canvas panel. Double clicks on
a cluster node expand the cluster to view the composite PPI sub-
network. The menu bar and tool bar inlet provide advance functions
such as filtering out low k-value nodes, adjusting the graph layout

Fig. 2. (A) Overview of the integration graph clustering method. Notably, the clusters in TC are sorted in a descending order according to their community score. (B) The pseudocode
of method.
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style, and saving the graph or the PPIs involved in the displayed graph. A
shortcut is also available to submit the cluster to DAVID Bioinformatics
Analysis database (Dennis et al., 2003) for further functional enrich-
ment analysis.

The summary table describes the clustering results from all eight
methods available in Spotlight. The clustering result is sent to GUI
through a query form for tuning parameters of the clustering method,
cluster ranking criteria and the number of clusters to display. The
clustering results can be exported as node attributes and utilized
with other plug-ins running in Cytoscape. Clusters containing partic-
ular protein nodes are retrieved by a query form beneath the result
summary table. Detailed Spotlight usages can be found in the website
help page.

4. Experiments

4.1. Datasets

The yeast PPI network was downloaded from DIP (Scere20111027)
(Salwinski et al., 2004) as the test network. Briefly, this PPI network
consists of 5095 proteins and 24,700 interactions. The maximal
connected component set, including 4894 proteins and 21,720 inter-
actions, were used as the input set. Clusters derived from the input
set were then compared with gene ontology (GO) annotations and
known protein complexes to evaluate the predicting power of func-
tional modules and protein complexes. Next, GO database were
downloaded from Gene Ontology Consortium Online Database

(released date 04/08/2011) (Ashburner et al., 2000) and GO annota-
tions of yeast proteins were obtained from Saccharomyces Genome
Database (release date, 04/09/2011) (Cherry et al., 2012). Finally,
information about yeast known protein complexes and their compo-
nents list were obtained from MIPS (Mewes et al., 2006) and Aloy
et al. (Aloy et al., 2004).

4.2. Method comparison

In contrast to previous methods (Asur et al., 2007; Lancichinetti and
Fortunato, 2012; Zhang et al., 2009) which can only integrate partitions
computed with different methods, our algorithm incorporates various
partitions and overlapping graph clustering results. This work also
implemented a consensus method (referred to as CSS) according the
work of Lancichinetti and Fortunato (2012), which can integrate
overlapping graph clustering.

Fig. 4 describes a simple example to illustrate our proposed
method. Applying three different clustering methods on a graph al-
lows us to obtain three results, as shown in the remaining three
graphs. Among these results, (I) is produced by a partition method
and the remaining results are computed by two overlapping clus-
tering methods respectively. As for the results of a partition meth-
od, a vertex belongs to exact a cluster. Therefore, despite the
difficulty of assigning vertex d in this figure, this vertex must be
classified into a cluster. In contrast to the partitioning method, a
vertex may belong to more than one cluster (e.g., vertex d in (III))
or not belong to any cluster (e.g., vertex d in (II)). To construct

Fig. 4. Schematic illustration of the consensus clustering method. Three clustering results are shown as (I), (II) and (III) on the left side of the figure. The dash lines represent
clusters. For example, in (I), there are two clusters: {a, b, c, d} and {e, f, g}. Based on votes of different clustering results, the combination of three clustering results yields the
consensus graph shown on the right hand side. The thickness of each edge is proportional to its weight. If edges whose weights are less than 0.7 are removed, three clusters
{a, b, c}, {d} and {e, f, g} emerge.

Fig. 3. Snapshots of Spotlightworkflow and result displaying. PPI set is submitted to Spotlight through a succinct data-uploading interface. The results of clustering are shown in the
graph applet and listed in a summary table. Each cluster in the graph can be expanded for its node/edge components. Details for viewing Spotlight results are described in the man-
uscript and website help page.
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consensus matrix D, this work computes the similarity
between two vertices. For instance, the similarity between vertices
c and d is 2/3 because they are the same clustering in 2 out 3 times.
According to this matrix, the corresponding consensus graph ap-
pears in the right down graph in this figure. The thickness of each
edge is proportional to its weight. Three components are found if edges
whose weights are less than 0.7 are removed. Additionally, CSS with
thresholds ranging from 0.01 to 0.99 is performed in steps 0.01 to inte-
grate the different clustering results, in which the outcome is chosen as
its result.

4.3. Evaluation on functional modules

The annotations of Biological Process of gene ontology (GO) are cho-
sen here as the known functional modules. This subsection first de-
scribes the p-value used in the evaluation method. For a given GO

ontology, N denotes the total number of proteins annotated in the on-
tology. Additionally, for a given term in the ontology and a given cluster,
M is the total number of proteins with this annotation term; n repre-
sents the number of proteins in a cluster; and x refers to the number
of proteins in the cluster with annotations containing that term. In the
ontology, the p-value defined in Formula (2) is the probability of ob-
serving x or more proteins in a given cluster:

p−value ¼
Xn
i¼x

M
i

� �
N−M
n−i

� �

N
n

: ð2Þ

After the p-value is estimated, the value is modified by the
Bonferroni correction and generated E-value (Boyle et al., 2004).

Fig. 5. Comparison of the performance of the integrating graph clustering method and that of the other clustering methods: (A) F-Measure with GO term enrichment on the test
data (DIP, Scere20111027); (B) F-Score on two sets of experimental protein complexes (Aloy et al., and MIPS).
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Fig. 6. Subnetwork of yeast spliceosome analyzed by Spotlight. (A) The top clusters ranked by community score and the overlaps among clusters and known components in splicesome.
(B) Sharing of protein components among cluster 3, cluster 7, and spliceosome. (C) Subnetworks of the union of cluster 3 and cluster 7. Subunits of spliceosome are denoted by a blue dash
line.
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Here, based on the F-measure defined in Formula (3), the clustering
performance is evaluated by annotations of biological process
sub-ontology. In Formula (3), sensitivity is defined as the fraction of
annotations enriched in at least one cluster with an E-valueb10−4;
in addition, specificity refers to the fraction of clusters enriched by
at least one annotation with an E-valueb10−4 (Ulitsky and Shamir,
2009).

F−measure ¼ 2� Sensitivity� Specificity
Sensitivityþ Specificity

ð3Þ

Fig. 5A summarizes the performance of functional modules obtained
from GO, as predicted by various methods. This figure reveals that Spot-
light and CPM are superior to the other methods.

4.4. Evaluation on protein complexes

The overlapping score, shown as Formula (4), was used to deter-
mine how effective a predicted complex PC could match a known pro-
tein complex KC from the benchmark set of complexes. As is assumed
here, PC matches KC if OS(PC, KC)>0.2 (Bader and Hogue, 2003).

OS PC;KCð Þ ¼ PC∩KCj j2
PCj j � KCj j ð4Þ

Additionally, the performance of algorithms for clustering was eval-
uated by performing specificity versus sensitivity analysis again. The
number of true positives (TP) is defined as the number of predicted
complexes matching at least one known protein complex; in addition,
the number of false positives (FP) represents all predicted complexes
minus TP. Moreover, the number of false negatives (FN) equals the
number of known complexes not matched by predicted complexes.
Sensitivity is defined as TP/(TP+FN), while specificity represents TP/
(TP+FP). In this work, the union of protein complexes from MIPS and
Aloy et al. (2004) was used as the benchmark. Fig. 6 shows the perfor-
mance of various methods. The same evaluating procedure was applied
to GO term (Fig. 5A), indicating that the proposed approach (i.e. Spot-
light) is still superior to other methods (Fig. 5B).

4.5. Recovery of essential complexes in spotlight clusters

Supplementary Table S1 lists the top 10 clusters of yeast network
deciphered by Spotlight, as ranked by the community score. This
table lists the MIPS complexes matched to the cluster components
(E-valueb0.001) as well. Their biological relevance is also more
closely examined with respect to GO term enrichment and protein
complex recovery. Notably, the recovery of MIPS complexes by a
cluster is defined by the enrichment of the complex components in
the cluster (E-valueb0.001). This table reveals that each of the top
10 clusters is significantly related to particular GO terms which can
be available at the Spotlight online help validation section, http://
hub.iis.sinica.edu.tw/spotlight/Help/main.htm#validation.

An important feature of the spotlight algorithm is that the protein
component appears in more than one cluster. This algorithm reflects
the biochemical properties of some multi-talent proteins. For this
situation, consider the spliceosome as an example. Most of the eu-
karyotic genes contain introns. These non-protein-coding segments
are transcripted and spliced from pre-mRNA, and coding segments
(exons) are ligated before translation begins. This RNA splicing is
accomplished by enormous cellular machinery, the spliceosome
(Stevens et al., 2002; Will and Luhrmann, 2011). The components
and dynamics of splicesome are overall conserved among meta-
zoans. The size of spliceosome is in a multi-megadalton level, as
composed by five snRNPs and many non-snRNP proteins. The
spliceosome is highly dynamic with respect to its components. It is

flexible yet has a high fidelity, which is assumed to be involved in al-
ternative splicing that is beneficial in diversifying the gene product.

Protein components of spliceosome and their subunit assignment
are based on the findings of Chen and Cheng (2012). Briefly, in this
work, the 94 known spliceosomal proteins were mapped to the
clusters identified by Spotlight Integration method. Except for
those proteins that are not found in the yeast PPI dataset
(Scere20111027) or not assigned to clusters derived from the inte-
gration method. The mapping results of the remaining 73
spliceosomal proteins indicate that two clusters (i.e. clusters 3 and
7) attract most of the spliceosome components (Fig. 6A). Next, the
function and network structure of clusters 3 and 7 components are
more closely examined. According to Figs. 6B and C, most of the clus-
ter 3/cluster 7 common components are found in snRNPs Sm, Like Sm
(Lsm), and tri-snRNP U4/U6.U5. The major contributor of U1 is cluster
3, while most of the non-snRNP proteins belong to cluster 7.

As mentioned earlier, spliceosome is not a pure protein complex.
The structure and function heavily rely on the RNA component,
explaining why the protein network alone may not reveal the full
spliceosome. Moreover, the dynamic nature and flexibility on compo-
sition make it challenging to identify its structural information. Based
on use of the clustering approach, our results indicate that about 60
proteins in these two clusters are highly associated with spliceosome.
These proteins may serve as candidates of intermediate components
as well as regulators for spliceosome and RNA editing process.

Moreover, this work presents an example of the complexes in-
volved in yeast transcription machinery to more fully utilize the spot-
light clustering results (Supplementary S1, figure S1). In the proposed
approach, spotlight can detect these unique network features, subse-
quently contributing to efforts to discover unknown components of
functional modules/protein complexes.

5. Discussion and conclusion

This work develops an integrating graph clustering method to cap-
ture protein modules/protein complexes by multiple network features
in different algorithms. To streamline the use of the clustering method
in the PPI sets of research interest, this work further implements the in-
tegration method into a web-based protein network topology analysis
scheme, Spotlight. The integration method performs better than other
available network clustering methods in terms of the functional associ-
ation among clustered members and the precision of obtaining protein
complexes. This method can obtain the transcription machineries and
RNA splicing machinery from the yeast protein network successfully
with some proteins that are highly associated yet not described in a
complex. Importantly, clusters identified by Spotlight provide further
insight into protein modules and complexes by inspecting the PPI net-
work community structures. In this way, novel complex components
or regulators can be highlighted by the close agglomeration to known
biological complexes.
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